Building and Plant Energy Analysis

Father O'Connell Hall Renovation

The Catholic University of America Washington, D.C

Kevin Andreone | Mechanical | Laura Miller | 10/4/2013

Table of Contents

Executive Summary	.2
Building Overview	.3
Figure 1: Father O'Connell Hall Site	.3
Mechanical System Overview	.3
Figure 2: AHU Zoning	.4
Load Calculation	.5
Figure 3-7: Block Loads	.6
Design Conditions	.8
Figure 8: Washington DC Design Conditions	.8
Internal Loads	.8
Figure 9: Internal Loads	.9
Schedules	.9
Construction	.9
Figure 10-11: Construction Values	.9
Calculated Load VS Design Load	10
Figure 12: Airflow	10
Figure 13: Capacity	1
Energy Consumption and Cost	1
Figure 14: Monthly Energy Consumption	L1
Graph 1 :Energy Consumption	12
Graph 2: Monthly HVAC Energy Consumption	2
Cost	13
Figure 15: Monthly Utility Cost	L3
Emissions	L3
Graph 3: Monthly Utility Cost1	13
Appendix A: System Checksums	٤4
Appendix B: System Summary1	19

Executive Summary

The purpose of this report is to estimate and analyze Father O'Connell's load and energy consumption. This was done using Trane Trace 700 software, which is acceptable software with professionals across the industry. Due to time restraints a block load calculation was done for simplification. The building was split up into 54 zones and five AHU's to analyze. Trace was used to calculate airflows and coil loads for each system.

Father O'Connell estimated the total peak cooling load to be 105 tons and a total peak heating load to be 93.5 tons. It makes sense that the cooling load would be higher than the heating load because the building is located in Washington, DC. When these are compared to the design capacities of the chiller and boilers it seems to be fairly accurate.

Energy consumptions were estimated using standard utility rates already in Trace. It was found that Father O'Connell consumes a total of 289,522 kWh/year, 3,095 therms/year of natural gas 277(1000gal) of water each year. These values are broken down further later in the report. Also, utilities cost about \$17,000 each year.

Building Overview

Father O'Connell Hall is a 54,000 SF, 15 million dollar exterior and interior renovation on the campus of The Catholic University of America in Washington, DC. Father O'Connell Hall has three conjoined structures: the four story main building constructed in 1914, the three story east wing constructed in 1958, and the west wing constructed in 1962. The Hall is the third oldest building on campus; the renovation will preserve the historical Catholic culture which The Catholic University of America reflects in our nation's capital. Father O'Connell Hall will be used for administrative/Enrollment services, admissions, financial aid, and a banquet hall which will be used to hold special events. Undergraduate Admissions is important because it generates revenue for the school. The design sells the school while still reflection the rich historical tradition of The Catholic University of America y of America and of the surrounding buildings.

The façade is primarly granite stone with Indiana limstone. The façade is broken up with a series of two story arched windows along the main building of the banquet hall, while the east and west wings use large rectangular on story windows. This closley represents a historic collegiate gothic style.

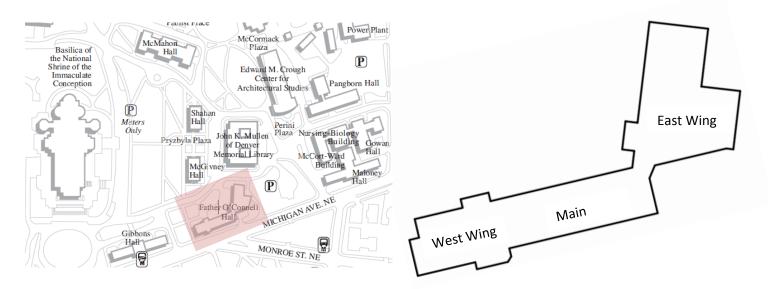


Figure 1: Father O'Connell Hall located on The Catholic University Campus.

Mechanical System Overview

Father O'Connell Hall is ventilated using seven air handling units, with one being 100% outdoor air (OAHU-1). *Figure 1* below shows the zoning for each air handling units throughout the building. All New AHU's will be equipped with economizer cycle to maximize ventilation and reduce energy. The 100% outdoor air unit will also have an air-to-air plate exchanger as well as

| Kevin Andreone | Mechanical | Laura Miller | 10/4/13 |

Father O'Connell Hall Renovation

a wraparound heat pipe heat recovery exchanger to pre-condition supply air temperatures and further reduce energy consumption. Recirculation of this air is provided by fan powered boxes, VAV's, and air transfer ducts located in the plenum above the ceiling on the basement and first floors.

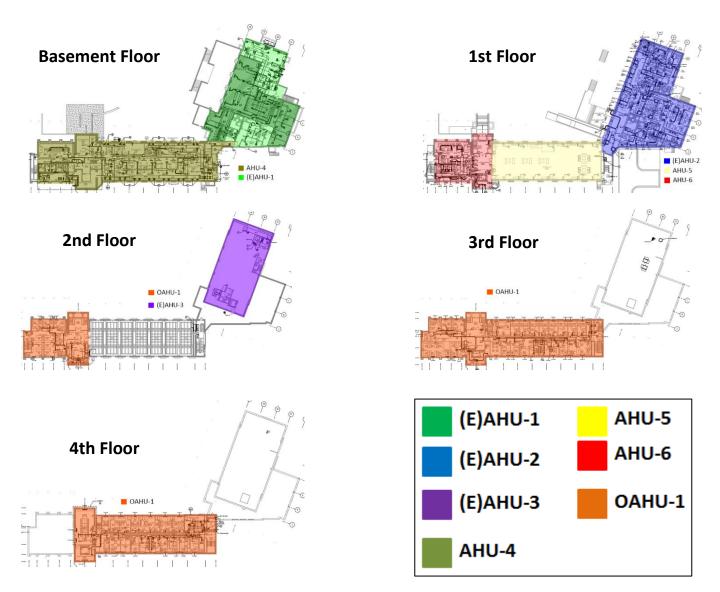


Figure 2: Air Handling Unit Zoning

Chilled Water System

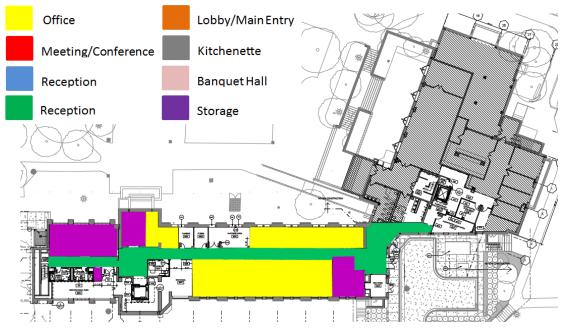
Chilled water is provided from one 97.7 ton electric air-cooled chiller located on grade on the south side of east wing. Chilled water is provided directly to all air handling units (AHU's) and all fan coil units (FCU's) located on floors 2 to 4. Chilled water flow delivered to all AHU's and FCU's is controlled by a proportional integral controller (PIC) control valve regulated by two

| Kevin Andreone | Mechanical | Laura Miller | 10/4/13 |

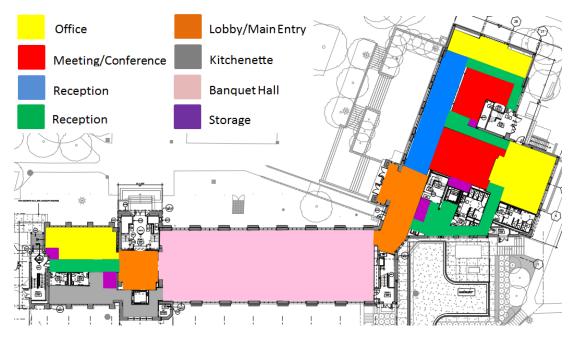
4 | Page

chilled water pumps with VFD's. Additional cooling for two telecom rooms is provided by two ductless split system units.

Heating Hot Water System


Washington Gas Company provides a low pressure (2 psi), 2 inch gas pipe to two 500 MBH condensing pulse combustion boilers located on the basement level of the west wing. These boilers provide all hot water to the AHU's, FCU's, and reheat coils for the VAV's and Fan powered boxes. The hot water flow is controlled the same way as the chilled water system using three heat water pumps with VFD's. There are two additional existing boilers located in the east wing of the basement floor. These boilers provide heating to the small portion of the building that is not in the scope of this renovation. Information for this portion of the building is not available at this time.

Load Calculation


Father O'Connell Hall Renovation building load and energy modal was done using Trane Trace 700. This is an accepted program by many building industry professionals for load and energy consumption calculations. Trane was utilized to calculate ventilation loads, heating and cooling loads, and annual energy and operating costs at Father O'Connell Hall. Block loading was done since time was a sensitive issue. Restrooms and stairwells were neglected since these would not contribute to any cooling loads. Also existing zones that were not changed were also neglected for these calculations. These block zones can be seen in the figures 3-7 below.

Father O'Connell Hall Renovation

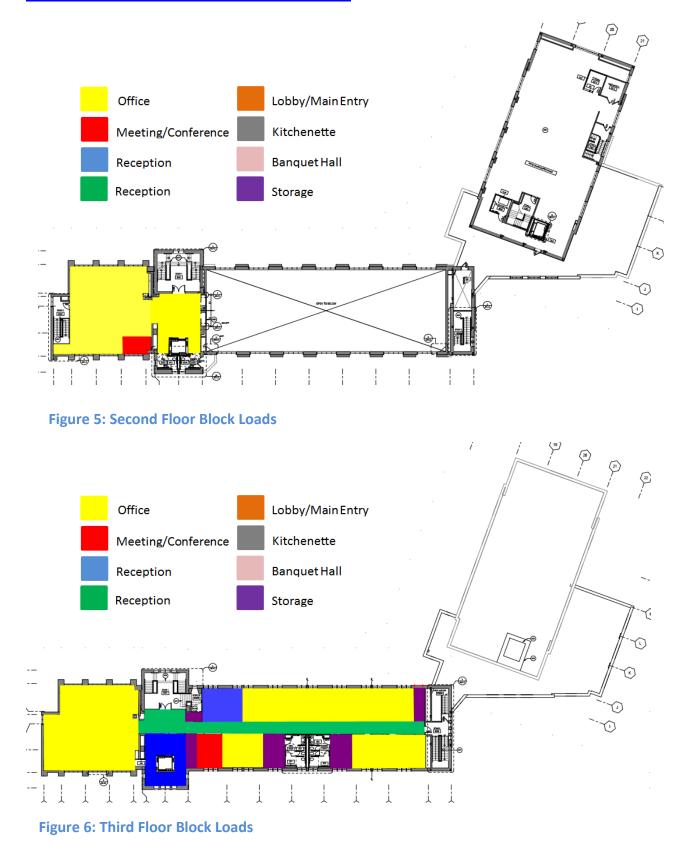
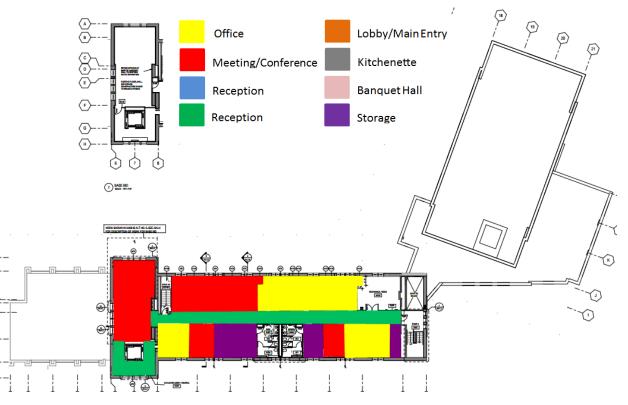

Figure 3: Basement Level Block Loads

Figure 4: First Floor Block Loads



Father O'Connell Hall Renovation

Father O'Connell Hall Renovation

Figure 7: Fourth Floor Block Loads

Design Conditions

Father O'Connell Hall is located on the campus of The Catholic University of America in Washington, D.C. Figure 8 to the right shows the design conditions for Washington, D.C. specified from ASHRAE that Trane Trace 700 uses as default settings.

	gn Cooling —		ASH	BAE MayDB	/MCWB		OK
	User C Override	Standard • Default		C 1%			Cancel
Dry bulb		91	93.2	90.4	87.9	۴F	Help
Wet bulb	<u></u>	77	75.1	74.3	73	۴F	Top
		1	,	,	1		
	I	Weather o	verrides appl	y to entire ye	ar?		
Winter Design	Heating						
	User	Standard					
	C Override	Oefault			_		
Dry bulb		17	9.6	14.5	۴F		
None	C 0.4%	C 1%	C 2%				
Drubulb	82.5	81.1	80	*F			
Dry bulb Wet bulb	82.5	81.1	80	°F °F			
Wet bulb	, 76.7	75.5	74.5	۴F			
Wet bulb Dew point	76.7	75.5	74.5	°F °F			
Wet bulb Dew point	76.7	75.5	74.5	°F °F			
Wet bulb Dew point	76.7 74.5 Method Ove	75.5	74.5	°F °F			
Wet bulb Dew point Modeling N	76.7 74.5 Method Ove	75.5	74.5	°F °F			
Wet bulb Dew point Modeling N	76.7 74.5 Method Ove	75.5 73.4 rride Design D	74.5 72.4 ay in DsnMc	°F °F			

Figure 8: Washington, D.C. Design Conditions

Internal Loads

The internal loads for the seven different space types are shown in table below. These values are found from a combination of ASHRAE Standard 90.1-2010 and design documents provided

| Kevin Andreone | Mechanical | Laura Miller | 10/4/13 |

Father O'Connell Hall Renovation

from the owner. Note that for an office space 125 watts was used per person since each person will be provided a desk with computer, monitor, phone, etc. The occupancy was determined by counting chairs from the furniture plans provided from the design documents so each space is different. A summary of the internal loads for each space can be seen in Figure 9 below.

	Internal Loads											
Space Type	Lighting Power Density	Miscellaneous Loads										
Office	1.1	125 W/Person										
Corridor	0.4	0.0 W/SF										
Conference	1.3	0.8 W/SF										
Lobby/Reception	1.5	0.6 W/SF										
Storage	0.6	0.0 W/SF										
kitchennete	1.3	1.5 W/SF										
Banquet Hall	1.3	0.6 W/SF										

Figure	9:	Internal	Loads
			Loudo

Schedules

Occupancy schedules for people, lights, and miscellaneous loads were utilized during normal work hours because Father O'Connell is mostly an office/administrative building. Loads during the day are much higher than at night with off peak hours of 11:00pm to 7:00am used during the weekday.

Construction

Father O'Connell Hall is constructed of three conjoined buildings: the east wing, the west wing, and the main building. Figures 10 and 11 below show the wall and roof construction for each conjoined structure. R-values were found from ASHRAE 2010 Fundamentals Handbook. There is not much insulation in the walls or roofs and may show a potential for improvement in my design.

East an	East and West Wing, and Main Building Wall Construction											
Thickness	Туре	R-Value	U-Value									
	Exterior, Outside 15 mph wind	0.17										
4"	Limestone	1										
8"	Masonry Block	1										
7/8"	Air Gap	1.18										
5/8"	Gypsum Wall Board	0.57										
	Interior, Still Air	0.68										
	Overall Value	4.6	0.2173913									

Figure 10: Wall Construction Values

	East and West Wing Roof											
Thickness	Туре	R-Value	U-Value									
	Exterior, Outside 15 mph wind	0.17										
3/8"	Built Up Roof	0.33										
3"	Insulation(R-3)	9										
3"	Light Weight Concrete	0.38										
	Interior, Inside Still Air	0.61										
	Overall Value	10.49	0.0953289									

	East and West Wing Roof											
Thickness	Туре	R-Value	U-Value									
	Exterior, Outside 15 mph wind	0.17										
1/2"	Terrecotta Tile	0.18										
3/8"	Felt Membrane	0.33										
4"	Light Weight Concrete	1.6										
	Interior, Inside Still Air	0.61										
	Overall Value	2.89	0.3460208									

Figure 11: Roof Construction Values

Calculated Load vs. Design Load

Using the system checksums, which can be found in Appendix B, the calculated airflow is compared with the design airflow found on the design documents. The load calculations were fairly accurate which can be seen in figure 12 below. A possible reason for additional error is that it is a common practice to oversize equipment to ensure peak cooling loads can be met. It should also be noted that there were complications modeling the 100% outside air handling unit. This was modeled in Trace so that the sensible cooling loads were also met by the air handling unit, rather than additional fan coil units as seen in the design documents. Although, the ventilation load was fairly accurate. Figure 13 below shows the buildings peak cooling and heating loads compared to the capacities of the single chiller and combined two boilers. As you can see loads are fairly similar giving an indication the load calculations are somewhat accurate.

Unit	Design (CFM)	Calculated (CFM)	Error (%)
AHU-2	7790	7446	4.4
AHU-4	4100	3537	13.7
AHU-5	8000	9090	-13.6
AHU-6	3500	3302	5.7
OAHU-1	1800	1697	5.7

Figure 12: Design vs. Calculated Airflow

Father O'Connell Hall Renovation

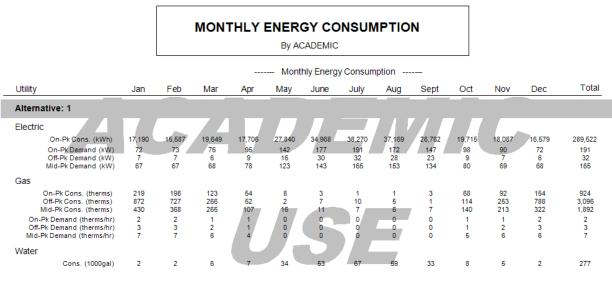

Design vs Calculated Energy Capacities										
Cooling	g	Heating								
Design (Tons)	97.7	Design (Tons)	83.333							
Calculated (Tons)	105.1	Calculated (Tons)	93.5							
Error (%)	7.6	Error (%)	12.2							

Figure 13: Design vs. Calculated Energy Capacity

Energy Consumption and Cost

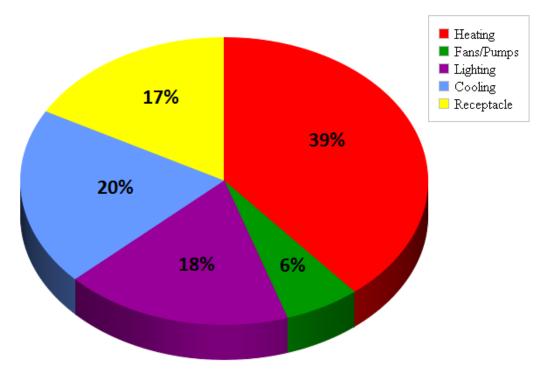
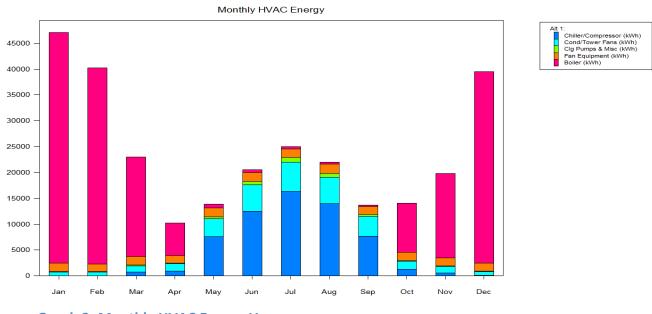
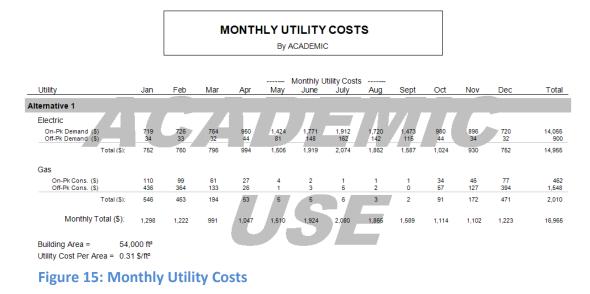

Trace was also used to calculate the Father O'Connell's energy usage and cost. This energy usage is a rough estimate. One major assumption was that fan coil units were not taken into account so fan energy would be much higher. In addition, unit heaters located in stairwells were also not taken into account. An energy model from the mechanical engineers could not be obtained for comparisons.

Figure 14 below shows that Father O'Connell consumes a total of 289,522 kWh/year, 3,095 therms/year of natural gas 277(1000gal) of water each year. Graph 1 clearlybreaks down the building energy consumption usage into heating, cooling, fans/pumps, lighting, and receptacles. It makes sense that heating requires the most energy followed by cooling.



Graph 1: Energy Consumption

Graph 2 below shows the monthly energy usage due to the chiller/compressor, condenser/tower fans, pumps, fan equipment, and the boiler. The graph makes sense with cooling equipment operating more in the summer months between May and September and the boiler operating in the winter months of November to March.


Graph 2: Monthly HVAC Energy Usage

| Kevin Andreone | Mechanical | Laura Miller | 10/4/13 |

Cost

Exact utility rates were able to be obtained so standard utility rates were used from Trane Trace 700. It was found that the annual utility cost is \$16,965. The utility cost per area is 0.31 \$/ft². Figure 10 below shows the Trace output for monthly utility costs.

Emissions

The emissions for Father O'Connell Hall for CO2, SO2, and NOX can be seen in graph 3 below. As you can see CO2 by far has the highest emissions. This will be a goal of mine to reduce the CO2 emission in future assignments.

Appendix A

AHU-2				Dy ACAD		By	bass VAV with Re	heat (30% M	in Flow De	efault)
COOLING	COIL PEAK	(CLG SPACE	PEAK	H	EATING CO	IL PEAK	TEMPE	RATURE	s
Peaked at Time: Outside Air:	Mo/Hr: OADB/WB/HR:		Mo/Hr: OADB:			Mo/Hr: He OADB: 17	ating Design	SADB Ra Plenum	Cooling F 56.0 76.8	Heating 85.0 60.6
Space Sens. + Lat. Envelope Loads Btulh Skylite Solar 0 Roof Cond 0 Roof Cond 0 Glass Solar 37,048 Glass Solar 37,048 Wall Cond 5,082 Wall Cond 18,988 Partiton/Door 0 Floor 0 Infitration 0 Sub Total ==> 61,068	9,733 0 3,738 0	Net Percent Total OfTotal Btuh (%) 0 0 0 9.733 4 37.048 16 5.082 2 22,676 10 0 0 0 0 0 0 74,538 33	Space Sensible Btu/h 0 0 0 69,052 3,463 15,624 0 0 0 0 8,8138	OfTotal (%) Envelo 0 Skyl 0 Skyl 0 Skyl 0 Skyl 0 Glas 10 Wal 0 Part 0 Floor 0 Adje 0 Infilt	ope Loads te Solar te Cond fCond s/DoorCond Cond tion/Door	Space Peak Space Sens Btuh 0 0 0 0 -18:322 -32:222 0 0 0 0 0 0 0 0 -51,143	Coil Peak Percent Tot Sens Of Total Btuh (%) 0 0.000 - -7.360 7.65 - -7.3754 39.26 - -37.754 39.26 0.00 0 0.00 0 0 0 0.00 0 0 0 0.00 0 0 0 0.00 0 0 0 0.00 0 0 0 0.00 0 0 0 -54.035 66.59	Retum Ret /OA Fn MtrTD FnBldTD FnFrict	76.8 78.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	60.6 54.0 0.0 0.0 0.0
Internal Loads Lights 16,611 People 64,700	0	20,764 9 64,700 29	16,274 38,730	10 Light 25 Peop	ole 👘	8	0 0.00 0 0.00	AHUVent Infil Min Stop/Rh Return	1,129 0 2,234 7,445	1,129 0 2,234 7,560
Misc 12,218 Sub Total ==> 93,529 Ceiling Load 2,994 Ventilation Load 0 Adj Air Trans Heat 0 Dehumid. Ov Sizing	4,153 -2,994 0	12,218 5 97,682 43 0 0 56,740 25 0 0 0 0	12,132 67,136 2,381 0 0	2 Ceiling 0 Ventila 0 AdjAir	Total ==>	0 0 -15,982 0 0 29,774	0 0.00 0 0.00 -66,729 69.39 0 0 29,774 -30,96	Exhaust Rm Exh Auxiliary Leakage Dwn Leakage Ups	1,129 0 0 0	1,243 0 0 0 0
Ov/Undr Sizing 0 ExhaustHeat Sup. Fan Heat Ret. Fan Heat DuctHeat Pkup Underflr Sup Ht Pkup Supply Air Leakage	-2,224 0 0	0 0 -2,224 -1 0 0 0 0 0 0 0 0 0 0	48	RAPre Additio	istHeat Pheat Diff. Pheat Diff. Diff		13,055 -13.59 0 0.00 -8,246 8.57 0 0.00 0 0.00	ENGINE % OA cfm/ff cfm/ton ft²/ton	ERING CF Cooling F 15.2 1.39 394.07 283.15	
Grand Total => 157,591	12,405 2	226,737 100.00	157,704	100.00 Grand	-	-37,351	-96,171 100.00	Btu/hr·ft² No. People	42.38 160	-16.66
Total Capacity ton MBh		Airflow EnterDB		Leave DB/WB/ °F °F gr			Blass	ATING COIL S CapacityCo MBh	SELECTIO il Airflow I cfm	N Ent Lve
Main Clg 18.9 226.7 Aux Clg 0.0 0.0 OptVent 0.0 0.0 Total 18.9 226.7	162.6 0.0	7,446 78.7 65 0 0.0 0		56.0 55.6 65 0.0 0.0 0	5.3 Floor 9.0 Part 9.0 IntDoor ExFir Roof		Main Htg Aux Htg Preheat Reheat 0 0 Humidif	-72.2 0.0 -16.9 -34.9 0.0	2,234 56 0 0 7,446 54 2,234 56 0 0	1.0 0.1 4.0 56.1 5.0 70.1 0.0 0.1
					Wall ExtDoor	4,258 87 0	8 21 OptVent 0 0 Total	0.0 -89.1	0 0	0.0 0.0

System Checksums By ACADEMIC

Project Name: Dataset Name: Load Calcs-blockload.tc FRACE® 700 v6.2.10 calculated at 05:40 PM on 10/03/2013 Alternative -1 System Checksums Report Page 1 of 5

Father O'Connell Hall Renovation

AHU-4								_,	NOND			Parallel F	Fan Po	owered	I VAV, H	tg Coil on Mi	ixing Box	Outle	et
	C00	LING C	OIL PEAK			CLO	G SPACI	E PEAK	(H	EATING	COIL	PEAK		TEMP	ERATUR	ES	
Pe	aked at T Outside		Mo/H OADB/WB/H	hr: 7/17 R: 89/76/	114		Mo/Hr: OADB:					Mo/Hr: OADB:		ng Desigr	'n	SADB Ba Plenum	Cooling 56.0 76.0	8	ing 5.0 8.9
Envelope Lo Skylite Sons Roof Cond Glass Solar Glass Solar Wall Cond Partition/Doo Floor Adjacent Fo Infiltration Sub Total =	ads Cond or or	Space s. + Lat. Btu/h 0 0 0 18,702 4,236 13,420 0 0 0 36,359	Plenum Sens. + Lat Btu/h 0 0 0 0 2,697 0 2,697		Percent OfTotal (% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Space Sensible Btu/h 0 0 20,605 3,841 12,168 0 0 0 0 3,845 14	(%) 0 0 27 5 16 0 0	Envel Sky Sky Roo Glas Glas Wal Pari Floo Adju	lite So lite Co of Con ss So ss/Do ss/Do ll Con tition/	Loads olar ond diar vorCond d Door	Space Peak Space Sens Btuh 0 0 -16.009 -25.387 0 0 0 0 -41.396			0.00 0.00 0.00 7.26 13.85 0.00 0.00 0.00 0.00	Retum Ret JOA Fn Mt TD Fn BldTD Fn Frict Alf Diffuser Terminal Main Fan Sec Fan Nom Vent	76.0 893 0.1 0.2 0.6 Cooling 3,546 3,546 3,546 3,546 0 3,546	61 10 () () () () () () () () () () () () ()	8.9 7.0 0.0 0.0 0.0 0.0 7.722 7.722 7.722 7.722 7.722 7.722 7.722 7.721 7.721 7.722 7.721 7.721 7.721 7.721 7.721 7.721 7.721 7.721
Internal Loa Lights People	ds	10,398 18,450	2,599 0	12,997 18,450	5	7.	10,398 10,250	14 14	Peo	nts ople	ads			, c	0.00	AHUVent Infil Min Stop/Rh Return	3,546 0 1,361 3,546	1	,361 0 ,361 ,361 ,361
Misc Sub Total == Ceiling Load Ventilation L Adj Air Tran: Dehumid, Ov	.oad s Heat	16,330 45,178 1,558 0 0	0 2,599 -1,558 0	16,330 47,778 0 177,827 0	18		16,330 36,978 1,482 0 0	o	Sub Ceilin Ventil	o Total Ig Loa latior r Tra	nd 1 Load ns Heat	0 0 -1,817 0 0 -2,307		0 0 -80,419 0 -2,307	0.00 0.00 36.46 0	Exhaust RmExh Auxiliary Leakage Dwr Leakage Ups			,301 0 0 0
Ov/Undr Sizi ExhaustHea Sup. Fan Hea Ret. Fan Hea DuctHeat Pl	ng t at t kup	23	-3,748 0 0	23 -3,748 3,354 0 0	-1		23	0	Exhau OAPr RAPr Additi	ustHe ehea ehea ional	at tDiff. tDiff. Reheat	-2,80		-2,307 1,675 -92,940 0	-0.76 42.14 0.00 0.00	ENGINI % OA cfm/ff cfm/ton	EERING C Cooling 100.0 0.68	Heati 5(ing 0.0 .26
Underfir Sup SupplyAir L Grand Total	eakage	83,118	0 -10	0 0 264,289	100.00	5	75,098	100.00		lyAir	upHtPkup Leakage / ==>	-45,520)	-220,555	0.00	cfm/ton ft²/ton Btu/hr∙ft² No. People	160.99 235.97 50.85 41	-67.	.64
	Total C	apacity MBh	COOLING C Sens Cap. C MBh				3/HR gr/lb	Leave °F	DB/WB/ °F g	/HR r/b	Gro	AREA:	S Glas	55 (%)	HEA	ATING COIL CapacityC MBh			Lvg
Main Clg Aux Clg OptVent	22.0 0.0 0.0	264.3 0.0 0.0	134.8 0.0 0.0	3,537 0 0	89.3 0.0 0.0	75.9 0.0 0.0	114.1 0.0 0.0	55.2 5 0.0 0.0	4.6 6 0.0 (2.9 0.0 0.0	Floor Part IntDoor ExFir	5,197 0 0 0			Main Htg Aux Htg Preheat Reheat	-69.7 0.0 -150.8 -22.5	2,722 (0 3,546 1,361 (0.0 17.0	85.0 0.0 55.2 70.0
Total	22.0	264.3									Roof Wall ExtDoor	0 3,319 0	0 658 0	0 20 0	Humidif OptVent Total	-131.0 0.0 -351.5	3,546		55.3 0.0

System Checksums By ACADEMIC

Project Name:

Dataset Name: Load Calcs-block load.trc

FRACE® 700 v6.2.10 calculated at 05:40 PM on 10/03/2013 Alternative -1 System Checksums Report Page 2 of 5

Father O'Connell Hall Renovation

AHU-5													Dispaceme	nt Ventila	tion (CV .
	CO	OLING C	OIL PEAK		C	CLG SPACE	PEAK			HEATING C	OIL PEAK		TEMP	ERATUR	ES	
F	Peaked at Outsi			Hr: 7/12 HR: 87/77/	121	Mo/Hr: OADB:				Mo/Hr: OADB:	Heating Design 17		SADB Ra Plenum	Cooling 63.0 79.4	90	ing 0.0 0.0
Envelope I Skylite Sol Skylite Cor	Loads Iar	Space ns. + Lat. Btu/h 0 0	Plenum Sens. + Lat Btu/h 0 0		Percent OfTotal (%) 0	Space Sensible Btu/h 0 0	Percent OfTotal (%) 0 0	Envelope Skylite S Skylite C	Loads olar	Space Peak Space Sens Btu/h 0 0	CoilPeak TotSens Btuł	OfTotal (%) 0.00	Retum Ret /OA Fn MtrTD Fn BldTD Fn Frict	75.4 77.1 0.1 0.2 0.6	70 63	0.0 2.6 0.0 0.0 0.0
RoofCond GlassSola	1	0 61.646	Ő	0 61.646	0 25	0 84,591	0	RoofCor GlassSo	nd	Ö		0.00	AIF	FLOWS		
Glass/Doo WallCond Partition/D Floor Adjacent F Infiltration Sub Total	orCond I Joor Floor	4,939 5,940 0 0 0 0 72,524	4,939 5,940 0 10,878	9,877 11,879 0 0 0 0 83,402	4 0 0 0 34	933 2,524 0 0 0 88,048	1 2 0 0 0 0 72	Glass/De WallCon Partition/ Floor Adjacen Infiltratio	oorCond d Door tFloor	-51,952 -42,828 0 0 0 -94,780	-51,95 -42,825 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13.94 11.49 0.00 0.00 0.00 0.00	Diffuser Terminal Main Fan Sec Fan Nom Vent AHII Vent	Cooling 9,090 9,090 9,090 0 1,274 1,274	9, 9, 9,	ting 090 090 090 274 274
Internal Lo	ads		_					InternalLo	ads				Infil	0		0
Lights People Misc		8,114 43,500 2,934	12,171 22,500 2,934	20,286 66,000 5,867	8 27 2 38	8,114 22,500 2,934	7 19 2	People Misc		000		0.00	Min Stop/Rh Return Exhaust Rm Exh	0 9,090 1,274	9. 1.	0 ,090 ,274 0
Sub Total Ceiling Loa Ventilation Adj Air Trai Dehumid. C	ad n Load ins Heat Ov Sizing		37,605	92,153 0 58,742 0 0	0 24 0 0	33,548 0 0 0	28 0 0 0	Sub Total Ceiling Los Ventilation Adj Air Tra Ov/Undr S	ad n Load ns Heat izing	0 0 0 -202,659	-75,288 -202,659	0.00 20.20 0 54.37	Auxiliary Leakage Dwn Leakage Ups	0000		0000
Ov/Undr Siz ExhaustHe Sup. FanHe Ret. FanHe DuctHeatF	eat leat eat	0	-569 0 0	0 -569 8,619 0 0	0 4 0	0	0	OAPrehea RAPrehea Additional	at Diff. It Diff. Reheat			0.00 0.00 0.00	% OA cfm/ff	Cooling 14.0 1.99	Heati 14	ing 4.0 .99
Underflr Su SupplyAir	Leakage		0	0	0			SupplyAir			0	0.00	cfm/ton ft²/ton Btu/hr·ft²	450.10 226.39 53.01	-60	.79
GrandTota	al =>	127,072	47,914	242,345	100.00 ¹	121,595	100.00	GrandTot	al =>	-297,439	-372,727	100.00	No. People	200		
	Total ton	Capacity MBh	COOLING Sens Cap. MBh	COIL SEL Coil Airflow cfm		/WB/HR F gr/lb	Leave [°F	B/WB/HR °F gr/lb	Gr	AREAS ossTotal	Glass ^{ft²} (%)	HEA	ATING COIL CapacityCo MBh			Lvg °F
Main Clg Aux Clg OptVent	20.2 0.0 0.0	242.4 0.0 0.0	179.9 0.0 0.0	9,090 0 0	77.1 66. 0.0 0.	0.0 0.0	62.2.58 0.0 0	0.0 0.0	Floor Part IntDoor	4,572 0 0		Main Htg Aux Htg Preheat	-278.0 -94.8 0.0	9,090 0 0	62.6 0.0 0.0	90.00 0.0 0.0
Total	20.2	242.4	5.5	Ŭ					ExFir Roof Wall ExtDoor	0 0 5,310 1,	0 0 593 30 0 0	Humidif OptVent <i>Total</i>	0.0 0.0 -372.7	0	0.0 0.0	0.0

System Checksums By ACADEMIC

Project Name:

Dataset Name: Load Calcs-blockload.trc

FRACE® 700 v6.2.10 calculated at 05:40 PM on 10/03/2013 Alternative -1 System Checksums Report Page 3 of 5

Father O'Connell Hall Renovation

Dypage VAV with Dobost (30% Min Flow Dofault)

AHU-6											E	Sypass VA	AV V	with Re	heat (30% M	In Flow D	efault)
	COOLING COIL PEAK							EAK			HEATING (COIL PEA	TEMPERATURES				
Peaked at Time: Outside Air:			Mo/Hr: 7/12 OADB/WB/HR: 87/77/121		Mo/Hr: 9 / 12 OADB: 79			No/Hr: Heating Desig OADB: 17						SADB Ra Plenum	Cooling 56.0 75.5	Heating 85.0 61.3	
Envelope Loa Skylite Solar Skylite Cond Roof Cond	Sens.	Btu/h 0 0	Plenum Sens. + Lat Btu/h 0 0 0	Total Btu/h 0 0 0	Percent OfTotal (%) 0 0 0 0	Sensi Bt	ce Per ble OfT u/h 0 0	otal (%) 0 0	Envelope SkyliteS SkyliteC RoofCor	olar cond nd	Space Peak Space Sens Btu/h 0 0 0	Tot Se	ns (u/h 0 0	Percent OfTotal (%) 0.00 0.00 0.00	Retum Ret /OA Fn MtrTD Fn BldTD Fn Frict	75.5 76.8 0.0 0.0 0.0	61.3 56.3 0.0 0.0 0.0
Glass/DoorCo WallCond	Glass Solar 22,619 Glass/DoorCond 2,216 WallCond 1,856		0 0 560	22,619 2,216 2,416	28 3 3	-1.0	013 -1 960 1		WallCor	oorCond nd	0 -11,464 -7,380	-11, -9,2	296 25.95		Diffuser	Cooling 3,302	Heating 991
Floor Adjacent Floor	Adjacent Floor 0		0	0	0	0 0 0 0 0 0		0 Partit 0 Floor 0 Adjao		t Floor	0	0 0 0		0.00 0.00 0	Terminal Main Fan	3,302 3,302	991 991
Sub Total ==>	Infiltration 0 Sub Total ==> 26,692 560		0 27,252		0 0 33 43,067		0 Infiltrati 62 Sub Tot		/ ==>	0 -18,843	-20,7	0 760	0.00 57.96	Sec Fan Nom Vent AHU Vent	0 369 369	0 369 369	
Internal Loads Lights People Misc Sub Total ==>	1	6,653 3,750 1,953 2,357	1,663 0 0 1,663	8,316 13,750 11,953 34,020	10 17 15 42	7.	35 160	10 11 17 38	Lights People Misc Sub Tota		0000		0 0 0 0	0.00 0.00 0.00 0.00	Infil Min Stop/Rh Return Exhaust Rm Exh Auxiliary	0 991 3,302 369 0	
Ceiling Load Ventilation Lo Adj Air Trans I Dehumid. Ov S	Heat Sizing	349 0 0	-349 0	20,792 0 0	0 25 0 0		60 0 0	0	Ceiling Lo Ventilatio Adj Air Tra Ov/Undr S	n Load Ins Heat izing	-5,931 0 0 8,209	-21,7	0	0.00 60.84 0 -22.92	Leakagé Dwn Leakage Ups	0	0
Ov/Undr Sizin, ExhaustHeat Sup. Fan Heat Ret. Fan Heat DuctHeat Pku	IP	0	-211 0 0	-211 0 0	000000000000000000000000000000000000000		68	0	ExhaustH OAPrehea RAPrehea Additiona	at Diff. at Diff. I Reheat		3,8 -5,3		-10.75 0.00 0.00 14.87	% OA cfm/ff	Cooling 11.2 1.54	
Underfir Sup Ht Pkup Supply Air Leakage		9.397	0 1.663	0 0 81.853	0 0 100.00		43 10	0.00	Underfir S SupplyAir Grand Tot		-16.565	5 -35.81		0.00 0.00	cfm/ton ft²/ton Btu/hr·ft² No. People	484.14 315.05 38.09 36	-14.90
	Total Cap ton		COOLING (Sens Cap. C MBh	COIL SEL	ECTIO	N	Le		9 B/WB/HR °F gr/b	Gr	AREAS				ATING COIL CapacityCo MBh	SELECTIO	DN Ent Ly
Main Clg Aux Clg OptVent	6.8 0.0 0.0	81.9 0.0 0.0	60.3 0.0 0.0	3,302 0 0	76.8 6 0.0 0.0	3.6 66.9 0.0 0.0 0.0 0.0	0	5.055 0.000	0.0 0.0	Floor Part IntDoor			P	lain Htg lux Htg Ireheat	-32.0 0.0 0.0	0	0.0 0.
Total	6.8	81.9								ExFir Roof Wall ExtDoo	0 0 1,371 r 0	0 0 532 39 0 0	H	teheat lumidif)ptVent Fo <i>tal</i>	-15.5 0.0 0.0 -32.0		56.0 70. 0.0 0. 0.0 0.

System Checksums

By ACADEMIC

Project Name:

Dataset Name: Load Calcs-block load.trc

IRACE® 700 v6.2.10 calculated at 05:40 PM on 10/03/2013 Alternative -1 System Checksums Report Page 4 of 5

Father O'Connell Hall Renovation

						Dy /									
OAHU-1													F	Fan C	Coil
COC	CI	G SPACE	E PEAK		I	HEATING C	OIL PEAK	TEMPERATURES							
Peaked at Outsid	Mo/Hr: 7/17 OADB/WB/HR: 89/76/114			Mo/Hr: OADB:				Mo/Hr: H OADB: 1	SADB Ra Plenum	Cooling 55.0 .80.1	7	ting 75.0 55.5			
Envelope Loads Skylite Solar Skylite Cond RoofCond Glass Solar Glass DoorCond WallCond Partition/Door Floor Adjacent Boor Infiltration	Space ns. + Lat. Btu/h 0 0 68,439 16,916 34,279 0 0 0 0 119,634	Plenum Sens. + Lat Btuh 0 0 78,389 0 7,128 0 7,128 0 86,118		Percent OfTotal (%) 0 0 24 21 5 13 0 0 0 0 0 0 0 0 0 0 0	Space Sensible Btwh 0 0 0 138,434 8,536 23,417 0 0 0 0 170,388	Percent OfTotal (%) 0 0 55 3 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Envelope Skylite S Skylite C Roof Co Glass So	Loads obar loar oorCond nd /Door tFloor in	Space Peak Space Sens Btuh 0 0 -62:908 -57,440 0 0 0 -120,349	Tot Sen Btu -71,38 -62,90 -70,43	0 0.00 0 0.00 11 25.81 0 0.00 8 22.74 8 25.46 0 0.00 0 0.00 0 0.00 0 0.00	Retum Ret/OA Fn MrTD Fn BldTD Fn Frict Al Diffuser Terminal Main Fan Sec Fan Nom Vent	80.1 80.1 0.1 0.2 0.7 RFLOWS Cooling 11.28 11.28 11.28 11.28 11.28 11.597	e e g Hea 2 11 2 11 2 11 2 11 2 11 1 2 11 1 1 1 1	ating 1,282 1,282 1,697
Internal Loads Lights People Misc Sub Total ==> Ceiling Load Ventilation Load Adj Air Trans Heat Dehumid. Ov Sizing	37,545 68,250 30,811 136,606 21,864 -29,648 0	9,386 0 9,386 -21,864 0	46.931 68,250 30,811 145,993 0 -29,648 0 253	14 21 9 44 0 -9 0 0	35,243 39,244 29,995 104,483 14,414 -37,757 0	-15	Internal Lo Lights People Misc Sub Tota Ceiling Lo Ventilatio Adj Air Tra Ov/Undr S	a/ ==> ad n Load ans Heat	0 0 0 -19,318 -28,371 0 0	-28,37	0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1 10.25 0 0 0.00	AHU Vent Infil Min Stop/Rh Retum Exhaust Rm Exh Auxiliary Leakage Dw Leakage Dw	12,979 1,697		1,697 0 2,979 1,697 0 0 0
Ov/Undr Sizing ExhaustHeat Sup. Fan Heat Ret. Fan Heat DuctHeat Pkup Underfir Sup Ht Pkup SupplyAir Leakage Grand Total =>	2 248,457	-9,627 2,923 0 0 66,936	2 -9,627 12,569 2,923 0 0 0 328,215	0 ,3 4 1 0 0 0 100.00	2 251,529		ExhaustH OAPrehes RAPrehes Additiona Underfir S SupplyAi Grand Tot	atDiff. atDiff. IReheat SupHtPkup rLeakage	-168,038		8 18.80 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00	ENGIN % OA cfm/ff cfm/ton ft²/ton Btu/hr-ft² No. People	EERING Cooling 15.0 0.83 303.85 365.09 32.87 163	Hea 1 (ting 15.0 0.83 0.40
Total C ton	Capacity MBh	COOLING Sens Cap. 0 MBh			VB/HR gr/b	Leave D °F	XB/WB/HR °F gr/b	Gro	AREAS oss Total	Glass ft ² (%)	HE	ATING COIL CapacityC MBh	SELECTI cil Airflow	ON Ent °F	
Main Clg 27.4 Aux Clg 0.0 OptVent 9.8	3282 0.0 117.4	291.9 0.0 48.7	0	80.4 64.4 0.0 0.0 80.7 74.8	65.0 0.0 121.1	54.3 54 0.0 0 55.0 54	0.0 0.0	Floor Part IntDoor ExFir	13,556 0 0		Main Htg Aux Htg Preheat	-224.6 0.0 0.0	11,282 0 0	65.5 0.0 0.0	83.4 0.0 0.0
Total 37.1	445.6							Roof Wall ExtDoor	5,576 8,491 2,2	0 0 273 27 0 0	Humidif OptVent <i>Total</i>	0.0 -52.0 -276.6	0 1,697	0.0 42.5	0.0 70.0

System Checksums By ACADEMIC

Project Name:

Dataset Name: Load Calcs-blockload.trc

FRACE® 700 v6.2.10 calculated at 05:40 PM on 10/03/2013 Alternative -1 System Checksums Report Page 5 of 5

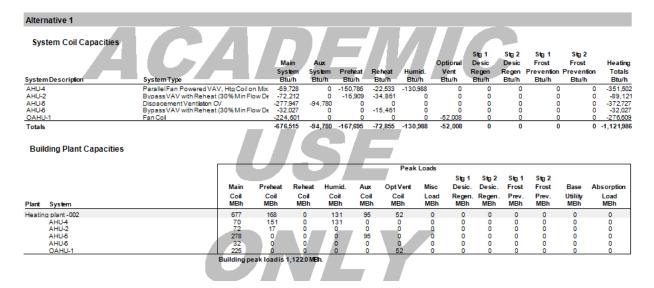
Appendix B

SYSTEM SUMMARY

DESIGN COOLING CAPACITIES

By ACADEMIC

Alternative 1


Building Airside Systems and Plant Capacities

	Peak PlantLoads									Block PlantLoads								
	Stg 1 Stg 2												Stg 1 Stg 2					
	Main	Aux	OptVent	Misc	Desic	Desic	Base	Peak	Of	Main	Aux	OptVent	Misc	Desic	Desic	Base	Block	
	Coil	Coil	Coil	Load	Cond	Cond	Utility	Total	Peak	Coil	Coil	Coil	Load	Cond	Cond	Utility	Total	
Plant System	ton	ton	ton	ton	ton	ton	ton	ton	mo/hr	ton	ton	ton	ton	ton	ton	ton	ton	
Cooling plant-001	95.3	0.0	9.8	0.0	0.0	0.0	0.0	105.1	7/17	85.1	0.0	9.3	0.0	0.0	0.0	0.0	94.4	
AHU-4	22.0	0.0	0.0	0.0	0.0	0.0	0.0	22.0	7/17	21.6	0.0	0.0	0.0	0.0	0.0	0.0	21.6	
AHU-2	18.9	0.0	0.0	0.0	0.0	0.0	0.0	18.9	7/17	15.5	0.0	0.0	0.0	0.0	0.0	0.0	15.5	
AHU-5	20.2	0.0	0.0	0.0	0.0	0.0	0.0	20.2	7/17	19.0	0.0	0.0	0.0	0.0	0.0	0.0	19.0	
AHU-6	6.8	0.0	0.0	0.0	0.0	0.0	0.0	6.8	7/17	4.2	0.0	0.0	0.0	0.0	0.0	0.0	4.2	
OAHU-1	27.4	0.0	9.8	0.0	0.0	0.0	0.0	37.1	7/17	24.8	0.0	9.3	0.0	0.0	0.0	0.0	34.2	
Building totals	95.3	0.0	9.8	0.0	0.0	0.0	0.0	105.1		85.1	0.0	9.3	0.0	0.0	0.0	0.0	94.4	
	Building peakload is 105.1 tons.									ng maxi	mum b	lock load of	94.4 ton	is occur	s in Jul	lyathou	r 17	

peakload is roo. Tiblis.

Building maximum block load of 94.4 tons of based on system simulation.

